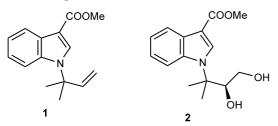


Tetrahedron Letters 43 (2002) 8839-8841

Synthesis of antifungal *N*-isoprenyl-indole alkaloids from the fungus *Aporpium caryae*[†]

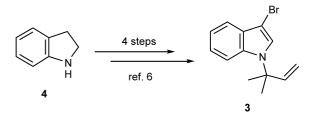

Giorgio Della Sala, Daniela Capozzo, Irene Izzo, Assunta Giordano,[‡] Antonella Iommazzo and Aldo Spinella*

Dipartimento di Chimica, Università di Salerno, Via S. Allende, 84081 Baronissi, Salerno, Italy

Received 3 October 2002; accepted 4 October 2002

Abstract—The synthesis of two antifungal alkaloids 1 and 2 is described. It involves the *N*-isoprenyl-indole brominated key-intermediate 3 prepared by introduction of the isoprenyl group on the indole core itself. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Basidiomycetes are known to produce a series of biologically active compounds.¹ Recently from the woodinhabiting fungus *Aporpium caryae*, two indole metabolites **1** and **2**, possessing antifungal activity, have been isolated.² These compounds are characterized by a *N*-isoprenyl-indole substructure which is common to other natural aminoacids and alkaloids produced by terrestrial or marine microorganisms and showing interesting bioactivities. Cyclomarins aminoacids³ and the antitumor dihydroxyquinone Asterriquinone⁴ are some valuable examples.

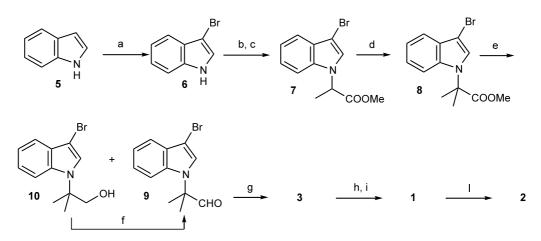

Recently these compounds have been objects of synthetic studies and just last year, Sugiyama et al. reported the synthesis of 1 and 2 from the 3-bromoderivative 3, obtained from indoline (4) (Scheme 1).⁵ In this strategy the isoprenyl unit was introduced on the indoline and the indole core was then formed after oxidation.

- [†] Dedicated to the memory of Professor G. Sodano.
- [‡] Current address: Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei, 34-80078- Pozzuoli, Napoli, Italy.

Herein we wish to report a novel synthesis of metabolites 1 and 2 through the intermediate 3, based on the direct isoprenylation of the nitrogen atom of the indole core. This strategy might be useful in general for synthesis of N-isoprenyl-indole natural compounds where it is advisable to start from an indole-type precursor.

Primarily we effected the bromination of indole affording 3-bromo-indole (6). Many methods to accomplish this transformation are available in literature.⁶ We gained the best results (96%) with Br_2 in DMF.^{6a} In our hands, bromination with 2 mol. equiv. of Me₃SiBr and dimethyl sulfoxide, differently to what reported,^{6b} gave 2,3-dibromo-indole as shown by comparison of ¹H and ¹³C NMR data,^{6c} instead of **6**.

Successively, as depicted in Scheme 2, the bromo-compound **3** was obtained from **6** in four steps. Being position 3 occupied, nitrogen became the better nucle-ophilic site: 3-bromo-indole's sodium salt could be easily alkylated with methyl 3-bromo-propionate to furnish α -methyl ester **7**.⁷



0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02193-7

Keywords: natural products; antifungal indole alkaloids; *N*-isoprenyl indole; Sharpless dihydroxylation.

^{*} Corresponding author.

Scheme 2. Reagents and conditions: (a) Br_2 , DMF, rt, 96%; (b) NaH, DMF, rt; (c) $CH_3CH(Br)COOMe$, 50°C, 93%; (d) *t*-BuOK, MeI, THF, rt, 72%; (e) DIBALH (1.3 equiv.), CH_2Cl_2 , -78°C, 61% (9), 34% (10); (f) TPAP, NMO, CH_2Cl_2 , mol. sieves, rt, 91%; (g) $Ph_3PCH_3^+Br^-$, NaH, THF, rt, then 9, rt, 70%; (h) *t*-BuLi, THF, -100°C; (i) ClCOOMe, -78°C, 89%; (j) OsO₄ (1 mol%), (DHQ)₂PYR (1.1 mol%), $K_3Fe(CN)_6$, K_2CO_3 , H_2O/t -BuOH 1:1, 0°C, quantitative yield, 69% ee.

The introduction of a second α -methyl group by treatment of the ester enolate with CH₃I, proved to be harder than expected. No reaction was observed employing many bases, such as *n*-BuLi, LDA, NaH-MDS, LiCl/LDA/DMPU and NaH at different temperatures. We were able to obtain good results only by slow addition of *t*-BuOK, 1 M THF solution, to a mixture of 7 and CH₃I, at room temperature. Furthermore, reaction time proved to be decisive: optimal yield (72%) was found after 15 min. Lower yield (50%) was observed after 4 h and a worsening (33%) after 72 h.

Selective reduction with DIBALH (1.3 mol. equiv.) of the resulting α, α -dimethyl ester **8**, gave a mixture of the related aldehyde **9** and alcohol **10**, respectively, in 61 and 34% yields. TPAP-catalyzed oxidation⁸ allows to recycle alcohol **10** and therefore to obtain **9** in 92% overall yield from **8**.

The target intermediate 3^9 was obtained by Wittig methylenation of 9: in order to reach satisfying yield, use of NaH as base was found to be better than *n*-BuLi. Hence we accomplished synthesis of 8 from indole in five steps and 41% overall yield.

3-Lithium-indoles, formed from related 3-bromo-compounds by lithium-halogen exchange, can react, as broadly described, with a number of electrophiles affording several 3-substituted indole analogues.¹⁰ As reported by Sugiyama et al. as well,⁵ treatment of organolithium derivative of 3 with ClCOOMe gave natural product 1 and successive Sharpless asymmetric dihydroxylation furnished the related diol 2. Spectral data of compounds 1 and 2 were identical to those reported for the natural products.^{2,11} As well as on other 3,3-dimethyl-monoenes, the best enantiomeric excesses in asymmetric OsO4 mediated dihydroxylation were obtained with 2,5-diphenyl-4,6-pyrimidine ligands.¹² 69% ee (S)-6 was obtained by employing (DHQ)₂PYR, its absolute configuration being determined by comparison of the optical rotation power sign with that reported in literature for the natural compound. The unnatural enantiomer, (R)-6, was formed in 89% ee when $(DHQD)_2PYR$ was used instead.¹³

In conclusion, antifungal compounds 1 and 2 were efficiently prepared, respectively, in six and seven steps and 36% overall yield starting from indole (5). Further applications of compound 3 as intermediate in the synthesis of other *N*-isoprenyl-indole natural compounds are currently subject of our studies.

Acknowledgements

We are grateful to Dr. Simona Francese for the realization of the ESMS spectra. This work has been supported by the MURST ('PRIN: Chimica dei Composti Organici di Interesse Biologico').

References

- Arnone, A.; De Gregorio, G.; Vajna de Pava, O. Tetrahedron 1998, 54, 10199–10204.
- Levy, L. M.; Cabrera, G. M.; Wright, J. E.; Seldes, A. M. Phytochemistry 2000, 54, 941–943.
- Renner, M. K.; Shen, Y.-C.; Cheng, X.-C.; Jensen, P. R.; Frankmoelle, W.; Kauffmann, C. A.; Fenical, W.; Lobkovsky, E.; Clardy, J. J. Am. Chem. Soc. 1999, 121, 11273–11276.
- 4. Yamamoto, Y.; Nishimura, K.-i.; Kiriyama, N. Chem. Pharm. Bull. 1976, 24, 1853–1859.
- Sugiyama, H.; Yokokawa, F.; Aoyama, T.; Shioiri, T. *Tetrahedron Lett.* 2001, 42, 7277–7280.
- (a) Bocchi, V.; Palla, G. Synthesis 1982, 1096–1097; (b) Bellesia, F.; Ghelfi, F.; Pagnoni, U. M.; Pinetti, A. J. Chem. Res. (S) 1989, 1, 182–183; (c) Brennan, M. R.; Erickson, K. L.; Szmale, F. S.; Tansey, M. J.; Thornton, J. M. Heterocycles 1986, 24, 2879–2885; (d) Norton, R. S.; Wells, R. J. J. Am. Chem. Soc. 1982, 104, 3628–3635.
- (a) Nilsson, I.; Isaksson, R. Acta Chem. Scand. B 1985, 39, 531–547;
 (b) Schuster, H. F.; Coppola, G. M. J. Heterocycl. Chem. 1994, 31, 1381–1384.

- 8. Griffith, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13–19.
- 9. Satisfactory analytical data (¹H, ¹³C NMR and ESMS spectra) were obtained for all new compounds. Compound 3: colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ=7.56 (m, 1H), 7.51 (m, 1H), 7.31 (s, 1H), 7.17 (m, 1H), 7.15 (m, 1H), 6.13 (dd, 1H, J=10.7, 17.4 Hz), 5.24 (d, 1H, J=10.7 Hz), 5.18 (d, 1H, J=17.4 Hz), 1.75 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ=143.5, 134.8, 128.5, 124.2, 121.7, 119.8, 119.3, 113.8 (×2), 89.3, 59.6, 27.8; ESMS: *m*/*z* 264/266 [MH]⁺, daughter ions of *m*/*z* 264: 196, 186.
- (a) Amat, M.; Hadida, S.; Sathyanarayana, S.; Bosch, J. J. Org. Chem. 1994, 59, 10–11; (b) Amat, M.; Seffar, F.; Bosch, J. Synthesis 2001, 267–275; (c) Belley, M.; Scheigetz, J.; Dubé, P.; Dolman, S. Synlett 2001, 222– 225; (d) Kawasaki, I.; Katsuma, H.; Nakayama, Y.; Yamashita, M.; Ohta, S. Heterocycles 1998, 48, 1887– 1901; (e) Vedejs, E.; Barda, D. A. Org. Lett. 2000, 2, 1033–1035; (f) Saulnier, M. G.; Gribble, G. W. J. Org. Chem. 1982, 47, 757–761; (g) Wenkert, E.; Angell, E. C.; Ferreira, V. F.; Michelotti, E. L.; Piettre, S. R.; Sheu, J.-H.; Swindell, C. S. J. Org. Chem. 1986, 51, 2343–2351; (h) Gribble, G. W.; Barden, T. C. J. Org. Chem. 1985, 50, 5900–5902.
- 11. Compound 1: ¹H NMR (CDCl₃, 400 MHz): δ = 8.19 (m, 1H), 8.04 (s, 1H), 7.54 (m, 1H), 7.24 (ddd, 1H, J=7.1, 6.9, 1.1 Hz), 7.18 (ddd, 1H, J=8.1, 7.1, 1.4 Hz), 6.12 (dd, 1H, J=10.8, 17.4 Hz), 5.27 (d, 1H, J=10.8 Hz), 5.18 (d, 1H, J=17.4 Hz), 3.92 (s, 1H), 1.79 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 165.9, 143.2, 136.1, 132.3, 128.2, 122.1, 121.9, 121.8, 114.7 (×2), 106.5, 60.3, 51.2, 28.1; ESMS: m/z 244 [MH]⁺, daughter ions of m/z 244: 176, 162, 144.
 Compound 2: ¹H NMR (CDCl₃, 400 MHz): δ = 8.20 (m,

1H), 7.99 (s, 1H), 7.67 (m, 1H), 7.26 (m, 1H), 7.21 (m, 1H), 4.50 (dd, 1H, J=7.5, 3.8 Hz), 3.85 (s, 1H), 3.54–3.44 (m, 2H overlapped), 2.61 (bs, 1H exchanged), 2.00 (bs, 1H exchanged) 1.78 (s, 3H), 1.76 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 166.0$, 135.6, 133.7, 128.2, 122.4, 122.1, 121.9, 114.1, 106.2, 75.0, 62.5, 62.4, 51.2, 24.3, 24.1; ESMS: m/z 278 [MH]⁺, daughter ions of m/z 278: 260, 246, 176, 144.; $[\alpha]_{\rm D} = -3.7$ (c 1.0, CHCl₃).

- Paquette, L. A.; Barriault, L.; Pissarnitski, D.; Johnston, J. N. J. Am. Chem. Soc. 2000, 122, 619–631.
- 13. The enantiomeric excesses of the diols (S)- and (R)-2 were determined by treating the monobenzoate derivatives with (R)-MTPA-Cl and evaluating the diastereomeric ratio of the MTPA esters obtained by integration of the characteristic ¹H NMR peaks.